A Numerical Study on the Ballistic Performance of Projectiles Formed by Shaped Charge

JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME(2023)

引用 0|浏览3
暂无评分
摘要
In this work, a numerical analysis of shaped charge impact process is conducted to inves-tigate the jet formation process and its penetration performance on metal targets. Numer-ical results are compared with experimental data from published literature for liners made up of copper and iron. Conical and bowl-shaped liner geometries are simulated with various configurations to observe their effects on projectile shape and penetration capabil-ity using the finite element (FE) method. The exact shape of the explosively formed projectile at the onset of impact is modeled as a rigid 3D body to simulate the penetration process. #45 and Armox 500T steels are used as the target materials, and the material behavior and failure mechanisms are modeled using the Johnson-Cook (JC) plasticity and damage models. In addition to the FE method, smoothed particle hydrodynamics (SPH) is utilized as well to evaluate its capacity in predicting the failure behavior of the metal targets. It is concluded that the FE method outperforms the SPH method at predicting failure modes, while SPH can still be used to predict residual velocity and hole diameters. Armox 500T demonstrates a higher impact resistance compared to #45 steel. Liner geom-etry is found to significantly affect penetration performance. Sharper and thinner projectiles formed from liners with small cone angles are shown to be highly efficient in penetrating through armor steel targets.
更多
查看译文
关键词
shaped charge impact, ductile failure, plasticity, finite element analysis, smoothed particle hydrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要