Microstructural Characterization of Al0.5CrFeNiTi High Entropy Alloy Produced by Powder Metallurgy Route

Materials(2023)

引用 0|浏览2
暂无评分
摘要
Alloys with superior properties represent the main topic of recent studies due to their effectiveness in reducing the cost of equipment maintenance and enhancing usage time, in addition to other benefits in domains such as geothermal, marine, and airspace. Al0.5CrFeNiTi was produced by solid state processing in a planetary ball mill, with the objective of obtaining a high alloying degree and a homogenous composition that could be further processed by pressing and sintering. The metallic powder was technologically characterized, indicating a particle size reduction following mechanical alloying processing when compared to the elemental raw powder materials. The microstructural analysis presented the evolution of the alloying degree during milling but also a compact structure with no major defects in the pressed and sintered bulk samples. The X-ray diffraction results confirmed the presence of face-centered cubic (FCC) and body-centered cubic (BCC) phases, predicted by the theoretical calculations, along with a hexagonal close-packed (HCP) phase, where the Al, Cr, Fe, Ni, and Ti phase was identified in both the alloyed powder material and sintered sample.
更多
查看译文
关键词
mechanical alloying,high entropy alloys,powder metallurgy route,microstructural characterization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要