Attractor dynamics with activity-dependent plasticity capture human working memory across time scales

Communications Psychology(2023)

引用 0|浏览2
暂无评分
摘要
Most cognitive functions require the brain to maintain immediately preceding stimuli in working memory. Here, using a human working memory task with multiple delays, we test the hypothesis that working memories are stored in a discrete set of stable neuronal activity configurations called attractors. We show that while discrete attractor dynamics can approximate working memory on a single time scale, they fail to generalize across multiple timescales. This failure occurs because at longer delay intervals the responses contain more information about the stimuli than can be stored in a discrete attractor model. We present a modeling approach that combines discrete attractor dynamics with activity-dependent plasticity. This model successfully generalizes across all timescales and correctly predicts intertrial interactions. Thus, our findings suggest that discrete attractor dynamics are insufficient to model working memory and that activity-dependent plasticity improves durability of information storage in attractor systems. Durability of information in human working memory across time intervals can be better explained by attractor dynamics that incorporate activity-dependent plasticity. Discrete attractor dynamics are less suited to model working memory when modeling the working memory time course.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要