Robust Magnetic Proximity Induced Anomalous Hall Effect in a Room Temperature van der Waals Ferromagnetic Semiconductor Based 2D Heterostructure

SMALL METHODS(2024)

引用 0|浏览9
暂无评分
摘要
Developing novel high-temperature van der Waals ferromagnetic semiconductor materials and investigating their interface coupling effects with 2D topological semimetals are pivotal for advancing next-generation spintronic and quantum devices. However, most van der Waals ferromagnetic semiconductors exhibit ferromagnetism only at low temperatures, limiting the proximity research on their interfaces with topological semimetals. Here, an intrinsic, van der Waals layered room-temperature ferromagnetic semiconductor crystal, FeCr0.5Ga1.5Se4 (FCGS), is reported with a Curie temperature (TC) as high as 370 K, setting a new record for van der Waals ferromagnetic semiconductors. The saturation magnetization at low temperature (2 K) and room temperature (300 K) reaches 8.2 and 2.7 emu g-1, respectively. Furthermore, FCGS possesses a bandgap of approximate to 1.2 eV, which is comparable to the widely used commercial silicon. The FCGS/graphene 2D heterostructure exhibits an impeccably smooth and gapless interface, thereby inducing a robust van der Waals magnetic proximity coupling effect between FCGS and graphene. After the proximity coupling, graphene undergoes a charge carrier transition from electrons to holes, accompanied by a transition from non-magnetic to ferromagnetic transport behavior with robust anomalous Hall effect (AHE). Notably, the van der Waals magnetic proximity-induced AHE remains robust even up to 400 K. A robust magnetic proximity effect with induced anomalous Hall effect (AHE) is achieved in a 2D heterostructure of a room temperature layered ferromagnetic semiconductor and graphene. The semiconductor demonstrates high Curie temperature (370 K) and strong magnetization (0.74 mu B f.u.-1). The proximity effect reverses the carrier type of graphene, making it ferromagnetic. The AHE remains stable even at 400 K. image
更多
查看译文
关键词
anomalous Hall effect,ferromagnetic semiconductor,magnetic proximity effect,room temperature,van der Waals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要