谷歌浏览器插件
订阅小程序
在清言上使用

UNSEG: Unsupervised Segmentation of Cells and Their Nuclei in Complex Tissue Samples

COMMUNICATIONS BIOLOGY(2024)

引用 0|浏览16
暂无评分
摘要
Multiplexed imaging technologies have made it possible to interrogate complex tissue microenvironments at sub-cellular resolution within their native spatial context. However, proper quantification of this complexity requires the ability to easily and accurately segment cells into their sub-cellular compartments. Within the supervised learning paradigm, deep learning-based segmentation methods demonstrating human level performance have emerged. However, limited work has been done in developing such generalist methods within the unsupervised context. Here we present an easy-to-use unsupervised segmentation (UNSEG) method that achieves deep learning level performance without requiring any training data via leveraging a Bayesian-like framework, and nucleus and cell membrane markers. We show that UNSEG is internally consistent and better at generalizing to the complexity of tissue morphology than current deep learning methods, allowing it to unambiguously identify the cytoplasmic compartment of a cell, and localize molecules to their correct sub-cellular compartment. We also introduce a perturbed watershed algorithm for stably and automatically segmenting a cluster of cell nuclei into individual nuclei that increases the accuracy of classical watershed. Finally, we demonstrate the efficacy of UNSEG on a high-quality annotated gastrointestinal tissue dataset we have generated, on publicly available datasets, and in a range of practical scenarios. An unsupervised segmentation algorithm that achieves state-of-art deep learning performance for segmenting cells and their nuclei in complex biological tissue images without requiring any training data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要