Demonstrating the Q-Pix front-end using discrete OpAmp and CMOS transistors

Peng Miao, Jonathan Asaadi, James B. R. Battat,Mikyung Han, Kevin Keefe, S. Kohani, Austin D. McDonald, David Nygren, Olivia Seidel,Yuan Mei

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
Using Commercial Off-The-Shelf (COTS) Operational Amplifiers (OpAmps) and Complementary Metal-Oxide Semiconductor (CMOS) transistors, we present a demonstration of the Q-Pix front-end architecture, a novel readout solution for kiloton-scale Liquid Argon Time Projection Chamber (LArTPC) detectors. The Q-Pix scheme employs a Charge-Integrate/Reset process based on the Least Action principle, enabling pixel-scale self-triggering charge collection and processing, minimizing energy consumption, and maximizing data compression. We examine the architecture's sensitivity, linearity, noise, and other features at the circuit board level and draw comparisons to SPICE simulations. Furthermore, we highlight the resemblance between the Q-Pix front-end and Sigma-Delta modulator, emphasizing that digital data processing techniques for Sigma-Delta can be directly applied to Q-Pix, resulting in enhanced signal-to-noise performance. These insights will inform the development of Q-Pix front-end designs in integrated circuits (IC) and guide data collection and processing for future large-scale LArTPC detectors in neutrino physics and other high-energy physics experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要