GALNT5 functions as a suppressor of ferroptosis and a predictor of poor prognosis in pancreatic adenocarcinoma.

American journal of cancer research(2023)

引用 0|浏览4
暂无评分
摘要
Mucin-type O-glycosylation, a posttranslational modification of membrane and secretory proteins, facilitates metastasis and immune escape in tumor cells. N-acetylgalactosaminyl-transferase 5 (GALNT5), the enzyme initiating mucin-type O-glycosylation, is known to advance the progression of various tumors. Yet, the comprehensive role of GALNT5 in pan-cancer scenarios remains to be elucidated. In this research, we conducted a database-centric pan-cancer expression analysis of GALNT5. We examined its aberrant expression, assessed its prognostic implications, and explored the correlations between GALNT5 expression and factors such as ferroptosis, immune cell infiltration levels, and immune checkpoint gene expression across multiple tumor types. To substantiate GALNT5's role, we analyzed cell proliferation, migration, invasion, and ferroptosis in PAAD cells after GALNT5 knockdown. Additionally, RNA-seq was employed to discern potential downstream pathways influenced by GALNT5. Our findings indicate that GALNT5 expression is heightened in the majority of tumors, correlating with the prognosis of multiple cancers. There's a notable association between GALNT5 levels and ferroptosis-related genes, immune cell infiltration, and immune checkpoint genes. In PAAD specifically, the role of GALNT5 was further probed. Knockdown of GALNT5 curtailed the proliferation, migration, and invasion capacities of PAAD cells, concurrently promoting ferroptosis. Moreover, in vivo studies demonstrated that GALNT5 inhibition stunted PAAD tumor growth. The RNA-seq analysis unveiled inflammation and immune-centric pathways, such as the TNF signaling pathway, as potential downstream conduits of GALNT5. In conclusion, our pan-cancer study underscores GALNT5 as a potential therapeutic target for enhancing PAAD prognosis, given its strong ties with ferroptosis and immune cell infiltration. Our experiments further define GALNT5 as a novel suppressor of ferroptosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要