A Microfabricated, Flow-Driven Grinding Mill for Mechanical Cell Lysing

Rosemary L. Smith, Avery England, Justin Millis, Corey Hirn,Scott D. Collins,Laurie B. Connell

Analytical chemistry(2023)

引用 0|浏览5
暂无评分
摘要
This paper presents the design, microfabrication, and demonstration of a novel microfluidic grinding mill for the lysis of the dinoflagellate, Alexandrium, a neurotoxin-producing genus of algae that is responsible for red tide and paralytic shellfish poisoning. The mill consists of a high-speed, hydrodynamically driven microrotor coupled to a micro grinding mill that lyses robust algal cells by mechanical abrasion with single-pass efficiencies as high as 97%. These efficiencies are comparable to, or better than, current mechanical and chemical lysing methods without adding complications associated with harsh chemical additives that can interfere with subsequent downstream bioanalysis. Release of cytoplasm from lysed algae was confirmed using polymerase chain reaction (PCR) amplification of Alexandrium DNA using dinoflagellate primers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要