Physiologically engineered porous titanium/brushite scaffolds for critical-size bone defects: A design and manufacturing study

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS(2023)

引用 0|浏览1
暂无评分
摘要
Repairing critical-size bone defects still represents a critical clinical challenge in the field of trauma surgery. This study focuses on a physiological design and manufacturing of porous composite scaffold (titanium Ti with 10 % mole iron doped brushite DCPD-Fe3+) which can mimic the biomechanical properties of natural cortical bone, specifically for the purpose of repairing critical-size defects. To achieve this, the principle of design of experiments (DOE) was applied for investigating the impact of sintering temperature, mineral ratio, and volume fraction of porosity on the mechanical properties of the fabricated scaffolds. The fabricated scaffolds had open porosity up to 60 %, with pore size approximately between 100 mu m and 850 mu m. The stiffness of the porous composite scaffolds varied between 3.30 GPa and 20.50 GPa, while the compressive strength ranged from approximately 130 MPa-165 MPa at sintering temperatures equal to or exceeding 1000 degrees C. Scaffolds with higher porosity and mineral content demonstrated lower stiffness values, resembling natural bone. Numerical simulation was employed by Ansys Workbench to investigate the stress and strain distribution of a critical size defect in mid-shaft femur which was designed to be replaced with the fabricated scaffold. The fabricated scaffolds showed flexible biomechanical behaviour at the bone/scaffold interface, generating lower stress levels and indicating a better match with the femoral shaft stiffness. The experimental and numerical findings demonstrated promising applications for manufacturing a patient-specific bone scaffold for critical and potentially large defects for reducing stress shielding and minimizing non-union risk.
更多
查看译文
关键词
Titanium,Brushite,Scaffold,Critical -size defect,Numerical analysis,Mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要