PLC1 mediated Cycloastragenol-induced stomatal movement by regulating the production of NO in Arabidopsis thaliana

BMC Plant Biology(2023)

引用 0|浏览3
暂无评分
摘要
Background Astragalus grows mainly in drought areas. Cycloastragenol (CAG) is a tetracyclic triterpenoid allelochemical extracted from traditional Chinese medicine Astragalus root. Phospholipase C (PLC) and Gα-submit of the heterotrimeric G-protein (GPA1) are involved in many biotic or abiotic stresses. Nitric oxide (NO) is a crucial gas signal molecule in plants. Results In this study, using the seedlings of Arabidopsis thaliana (A. thaliana) , the results showed that low concentrations of CAG induced stomatal closure, and high concentrations inhibited stomatal closure. 30 µmol·L −1 CAG significantly increased the relative expression levels of PLC1 and GPA1 and the activities of PLC and GTP hydrolysis. The stomatal aperture of plc1 , gpa1 , and plc1/gpa1 was higher than that of WT under CAG treatment. CAG increased the fluorescence intensity of NO in guard cells. Exogenous application of c-PTIO to WT significantly induced stomatal aperture under CAG treatment. CAG significantly increased the relative expression levels of NIA1 and NOA1 . Mutants of noa1 , nia1 , and nia2 showed that NO production was mainly from NOA1 and NIA1 by CAG treatment. The fluorescence intensity of NO in guard cells of plc1 , gpa1 , and plc1/gpa1 was lower than WT, indicating that PLC1 and GPA1 were involved in the NO production in guard cells. There was no significant difference in the gene expression of PLC1 in WT, nia1 , and noa1 under CAG treatment. The gene expression levels of NIA1 and NOA1 in plc1 , gpa1 , and plc1/gpa1 were significantly lower than WT, indicating that PLC1 and GPA1 were positively regulating NO production by regulating the expression of NIA1 and NOA1 under CAG treatment. Conclusions These results suggested that the NO accumulation was essential to induce stomatal closure under CAG treatment, and GPA1 and PLC1 acted upstream of NO.
更多
查看译文
关键词
Cycloastragenol, Stomatal movement, Phospholipase C1, G alpha-submit of the heterotrimeric G-protein, Nitric oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要