Heat exposure assessment based on high-resolution spatio-temporal data of population dynamics and temperature variations.

Journal of environmental management(2023)

引用 0|浏览2
暂无评分
摘要
Urban heat waves pose a significant risk to the health and safety of city dwellers, with urbanization potentially amplifying the health impact of extreme heat. Accurate assessments of population heat exposure hinge on the interplay between temperature, population spatial dynamics, and the epidemiological effects of temperature on health. Yet, many past studies have over-simplified the matter by assuming static populations, leading to substantial inaccuracies in heat exposure assessments. To address these issues, this study integrates dynamic population data, fluctuating temperature, and the exposure-response relationship between temperature and health to construct an advanced heat exposure assessment framework predicated on a population dynamic model. We analyzed urban heat island characteristics, population dynamics, and heat exposure during heat wave conditions in Beijing, a major city in China. Our findings highlight significant intra-day population movement between urban and suburban areas during heat wave conditions, with spatial population flow patterns showing clear scale-dependent characteristics. These population flow dynamics intensify heat exposure levels, and the disparity between dynamic population-weighted temperature and average temperature is most pronounced at night. Our research provides a more comprehensive understanding of real urban population heat exposure levels and can furnish city administrators with more scientifically rigorous evidence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要