Assembly of a core–shell MOF with stability into Polyacrylamide hydrogel for boosting extraction of uranium from seawater

Nano Research(2023)

引用 0|浏览4
暂无评分
摘要
Efficient and selective extraction of uranium (U(VI)) from seawater is essential for sustainable nuclear power production. This study reports a novel adsorbent zeolitic imidazolate framework (ZIF)-67@SiO2-A/polyacrylamide (PAM) which was synthesized by grafting the core–shell metal–organic frameworks (MOFs)-based nanostructures coated with the 3-aminopropyl triethoxysilane (APTES) functionalized SiO2 (SiO2-A) onto PAM hydrogel. The SiO2 shell was grown on the surface of MOF, which improved the acid-base resistance of MOF. The introduction of ZIF-67@SiO2-A enhances the specific surface area and adsorption efficiency of the PAM. The ZIF-67@SiO2-A/PAM shows remarkable adsorption capacity, fast adsorption kinetics, and good reusability for uranium. It has excellent adsorption property (6.33 mg·g−1, 30 d) in natural seawater. The X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), energy dispersive spectroscopy (EDS) mappings, and density functional theory reveal that the coordination by N and O in ZIF-67@SiO2-A/PAM with uranium is the main mechanism of uranium adsorption. Thus, ZIF-67@SiO2-A/PAM has great potential to capture uranium from natural seawater.
更多
查看译文
关键词
hydrogel,metal-organic frameworks,core-shelled nanostructures,uranium extraction from seawater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要