Route-dependent tailoring of carbon dot release in alginate hydrogel beads (HB-Alg@WTR-CDs): A versatile platform for biomedical applications

International journal of biological macromolecules(2024)

引用 0|浏览2
暂无评分
摘要
The present investigation explores the different pathways for development of waste tea residue carbon dots (WTR-CDs) loading into hydrogel matrix for WTR-CDs releasing probe. Fluorescent WTR-CDs incorporated into hydrogel matrix were synthesized by valorisation of kitchen waste tea by simple carbonization method (lambda em = 450 nm, phi WTR- CDs =18.45 %). Biopolymeric alginate-based hydrogel beads (HB-Alg) were prepared by simple extrusion method. Three routes (ex-situ/in-situ) were employed for loading of WTR-CDs into hydrogel matrix. Successful synthesis of WTR-CDs and its loading into hydrogel matrix was confirmed via various characterization techniques. Developed protocol was employed for stimuli-responsive cumulative release of WTR-CDs study (pH = 3.0, 7.4, 9.0) was monitored over 7 days. Results suggests that, the HB-Alg@WTR-CDs-A system with in-situ loaded WTR-CDs have sustained release due to ionic interaction of WTR-CDs with crosslinked polymer network, whereas in HB-Alg@WTR-CDs-B, WTR-CDs loaded in wet-beads having burst release in which loosely bound WTR-CDs into hydrogel cavities releases rapidly. While, in case of HB-Alg@WTR-CDs-C, lowest release was observed due to weakly surface bound WTR-CDs, low loading and shrinkage of pores into dry-beads. Radical scavenging activity was studied and shown antioxidant properties of WTR-Powder, WTR-CDs and HB-Alg@WTRCDs-A,B,C. Cytotoxicity of all systems was checked via CAM assay and significant growth in blood vascularization with no loss of chick embryo confirming the released WTR-CDs are biocompatible. Successful investigation and summarization of results ensure that, waste-valorisation, simple, sustainable, and smart hydrogel systems with different routes of WTR-CDs loading have opened a window to understand the mechanistic pathways in release behaviour. This robust approach for improvement of smarter and biocompatible materials can be fruitfully applicable in advanced, controlled and stimuli responsive delivery probes.
更多
查看译文
关键词
Waste tea residue carbon dots (WTR-CDs),Sustainable,Biocompatible,Hydrogel beads,Smart releasing probe,Angiogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要