Insight into the Formation of Pic b through the Composition of Its Parent Protoplanetary Disk as Revealed by the Pic Moving Group Member HD 181327

ASTRONOMICAL JOURNAL(2024)

引用 0|浏览8
暂无评分
摘要
It has been suggested that beta Pic b has a supersolar metallicity and subsolar C/O ratio. Assuming solar carbon and oxygen abundances for the star beta Pic and therefore the planet's parent protoplanetary disk, beta Pic b's C/O ratio suggests that it formed via core accretion between its parent protoplanetary disk's H2O and CO2 ice lines. However, beta Pic b's high metallicity is difficult to reconcile with its mass M-p = 11.7 M-Jup. Massive stars can present peculiar photospheric abundances that are unlikely to record the abundances of their former protoplanetary disks. This issue can be overcome for early-type stars in moving groups by inferring the elemental abundances of the FGK stars in the same moving group that formed in the same molecular cloud and presumably share the same composition. We infer the photospheric abundances of the F dwarf HD 181327, a beta Pic moving group member that is the best available proxy for the composition of beta Pic b's parent protoplanetary disk. In parallel, we infer updated atmospheric abundances for beta Pic b. As expected for a planet of its mass formed via core-accretion beyond its parent protoplanetary disk's H2O ice line, we find that beta Pic b's atmosphere is consistent with stellar metallicity and confirm that it has superstellar carbon and oxygen abundances with a substellar C/O ratio. We propose that the elemental abundances of FGK dwarfs in moving groups can be used as proxies for the otherwise difficult-to-infer elemental abundances of early-type and late-type members of the same moving groups.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要