谷歌浏览器插件
订阅小程序
在清言上使用

H i s-GAN

引用 0|浏览2
暂无评分
摘要
Generative Adversarial Network (GAN) has become an active research field due to its capability to generate quality simulation data. However, two consistent distributions (generated data distribution and original data distribution) produced by GAN cannot guarantee that generated data are always close to real data. Traditionally GAN is mainly applied to images, and it becomes more challenging for numeric datasets. In this paper, we propose a histogram-based GAN model (H i s-GAN). The purpose of our proposed model is to help GAN produce generated data with high quality. Specifically, we map generated data and original data into a histogram, then we count probability percentile on each bin and calculate dissimilarity with traditional f-divergence measures (e.g., Hellinger distance, Jensen–Shannon divergence) and Histogram Intersection Kernel. After that, we incorporate this dissimilarity score into training of the GAN model to update the generator’s parameters to improve generated data quality. This is because the parameters have an influence on the generated data quality. Moreover, we revised GAN training process by feeding GAN model with one group of samples (these samples can come from one class or one cluster that hold similar characteristics) each time, so the final generated data could contain the characteristics from a single group to overcome the challenge of figuring out complex characteristics from mixed groups/clusters of data. In this way, we can generate data that is more indistinguishable from original data. We conduct extensive experiments to validate our idea with MNIST, CIFAR-10, and a real-world numeric dataset, and the results clearly show the effectiveness of our approach.
更多
查看译文
关键词
H i s-GAN,Histogram-based evaluation metric,Numeric simulation data generation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要