Data-independent acquisition for proteomic applications in early-stage endometrial cancer progression

JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH(2024)

引用 0|浏览1
暂无评分
摘要
Aim: Most endometrial cancer (EC) patients are diagnosed at an early-stage (FIGO stage I or II), with a favorable prognosis. However, some high-grade, early-stage EC patients have unexpected recurrences and undesirable results, the molecular alterations that underlie these tumors are far from being fully understood. Our goal was to use proteome analysis to examine dysregulated pathways in this specific subgroup of EC.Methods: We used data-independent acquisition (DIA) quantitative proteomics to analyze cancer and matched paracancerous tissues from 20 EC patients (10 high-grade and 10 low-grade). Immunohistochemistry (IHC) analysis was used to validate protein expression of six hub genes.Results: In total, 7107 proteins were quantified, while 225 downregulated and 366 upregulated proteins in high-grade cancer tissues, 130 downregulated and 413 upregulated proteins in high-grade paracancerous tissues. The pathway associated with oxidative phosphorylation (OXPHOS) was upregulated and have similar expression patterns in high-grade EC tissues and matched paracancerous tissues. OXPHOS-related protein, ATP5F1D showed the best classification and diagnostic ability in distinguishing high-grade from low-grade EC. In both cancer and paracancerous tissues, double-label immunofluorescence demonstrated ITGA4 and COL4A1 co-localized at the basal membrane.Conclusions: Our present works elucidate that metabolism reprogramming is associated with high-grade, early-stage EC, particularly OXPHOS is upregulated. Noticeably, the paracancerous tissues have undergone molecular changes similar to cancer tissues, maybe they have signal exchange via secreted proteins (ITGA4 and COL4A1). The upregulation of OXPHOS-related proteins may be the potential biomarker for EC diagnosis, and targeting OXPHOS metabolism might be an effective treatment for high-grade, early-stage EC.
更多
查看译文
关键词
endometrial cancer,oxidative phosphorylation,paracancerous tissue,proteomics,secreted protein
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要