ab initio informed inelastic neutron scattering for time-resolved local dynamics in molten MgCl2

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
Ion dynamics that drive the transport and thermophysical properties of molten salts are poorly understood due to challenges in precisely quantifying the spatial and temporal fluctuations of specific ions in highly disordered systems. While the Van Hove correlation function (VHF) obtained from inelastic neutron scattering (INS) probes these dynamics directly, its interpretation is limited by the inherent species-averaging of experiments, which obscures analysis of key ion transport and solvation mechanisms. Here, ab initio molecular dynamics (AIMD) is used to model the VHF, unravel its partial contributions, and elucidate its underlying ionic transport mechanisms. Slow decorrelation is revealed for oppositely charged ions (Mg2+ and Cl-) caused by ion exchange across the solvation shell between adjoining ionocovalent complexes. Furthermore, transport coefficients are accurately recovered and connections between macroscopic properties and ion dynamics are revealed. This study demonstrates the potential of ab initio-informed VHF to resolve long-standing challenges in uncovering relationships between picosecond-scale ion dynamics, mechanisms, and emergent physical properties of molten salts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要