Data-Driven Approach for Upper Limb Fatigue Estimation Based on Wearable Sensors

SENSORS(2023)

引用 0|浏览6
暂无评分
摘要
Muscle fatigue is defined as a reduced ability to maintain maximal strength during voluntary contraction. It is associated with musculoskeletal disorders that affect workers performing repetitive activities, affecting their performance and well-being. Although electromyography remains the gold standard for measuring muscle fatigue, its limitations in long-term work motivate the use of wearable devices. This article proposes a computational model for estimating muscle fatigue using wearable and non-invasive devices, such as Optical Fiber Sensors (OFSs) and Inertial Measurement Units (IMUs) along the subjective Borg scale. Electromyography (EMG) sensors are used to observe their importance in estimating muscle fatigue and comparing performance in different sensor combinations. This study involves 30 subjects performing a repetitive lifting activity with their dominant arm until reaching muscle fatigue. Muscle activity, elbow angles, and angular and linear velocities, among others, are measured to extract multiple features. Different machine learning algorithms obtain a model that estimates three fatigue states (low, moderate and high). Results showed that between the machine learning classifiers, the LightGBM presented an accuracy of 96.2% in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations, and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the resulting model can be used to estimate fatigue during heavy lifting in work environments, having the potential to monitor and prevent muscle fatigue during long working shifts.
更多
查看译文
关键词
muscle fatigue,electromyography,inertial sensors,Optical Fiber Sensors,machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要