Two dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method

Physical Review B(2023)

引用 0|浏览3
暂无评分
摘要
We present a hybrid numerical approach to simulate quantum many body problems on two spatial dimensional quantum lattice models via the non-Abelian ab initio version of the density matrix renormalization group method on state-of-the-art high performance computing infrastructures. We demonstrate for the two dimensional spinless fermion model and for the Hubbard model on torus geometry that altogether several orders of magnitude in computational time can be saved by performing calculations on an optimized basis and by utilizing hybrid CPU-multiGPU parallelization. At least an order of magnitude reduction in computational complexity results from mode optimization, while a further order of reduction in wall time is achieved by massive parallelization. Our results are measured directly in FLOP and seconds. A detailed scaling analysis of the obtained performance as a function of matrix ranks and as a function of system size up to $12\times 12$ lattice topology is discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要