Quantum Coding with Finite Thermodynamic Resources

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Quantum direct coding or Schumacher compression generalised the ideas of Shannon theory, gave an operational meaning to the von Neumann entropy and established the term qubit. But remembering that information processing is carried out by physical processes prompts one to wonder what thermodynamic resources are required to compress quantum information and how they constrain one's ability to perform this task. That is, if Alice and Bob only have access to thermal quantum states and clocks with finite accuracy, how well can they measure, encode and decode pure quantum state messages? In this work we examine these questions by modelling Alice's typical measurement as a unitary involving a measurement probe, investigating imperfect timekeeping on encoding and decoding and considering the role of temperature in Bob's appended qubits. In doing so, we derive fidelity bounds for this protocol involving the correlations Alice can form with their measurement probe, the variance of the clock's ticks and the temperature of Bob's qubits. Finally, we give an insight into the entropy produced by these two agents throughout the compression protocol by relating the resources they use to a quantum thermodynamic cooling protocol.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要