谷歌浏览器插件
订阅小程序
在清言上使用

Offline Skill Generalization via Task and Motion Planning.

CoRR(2023)

引用 0|浏览8
暂无评分
摘要
This paper presents a novel approach to generalizing robot manipulation skills by combining a sampling-based task-and-motion planner with an offline reinforcement learning algorithm. Starting with a small library of scripted primitive skills (e.g. Push) and object-centric symbolic predicates (e.g. On(block, plate)), the planner autonomously generates a demonstration dataset of manipulation skills in the context of a long-horizon task. An offline reinforcement learning algorithm then extracts a policy from the dataset without further interactions with the environment and replaces the scripted skill in the existing library. Refining the skill library improves the robustness of the planner, which in turn facilitates data collection for more complex manipulation skills. We validate our approach in simulation, on a block-pushing task. We show that the proposed method requires less training data than conventional reinforcement learning methods. Furthermore, interaction with the environment is collision-free because of the use of planner demonstrations, making the approach more amenable to persistent robot learning in the real world.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要