Variable long-term protection by radiation-, chemo-, and genetically-attenuated Plasmodium berghei sporozoite vaccines

VACCINE(2023)

引用 0|浏览6
暂无评分
摘要
Long-term protection against malaria remains one of the greatest challenges of vaccination against this deadly parasitic disease. Whole-sporozoite (WSp) malaria vaccine formulations, which target the Plasmodium parasite's pre-erythrocytic stages, include radiation-attenuated sporozoites (RAS), early- and late-arresting geneticallyattenuated parasites (EA-GAP and LA-GAP, respectively), and chemoprophylaxis with sporozoites (CPS). Although all these four vaccine formulations induce protective immune responses in the clinic, data on the longevity of the antimalarial protection they afford remain scarce. We employed a mouse model of malaria to assess protection conferred by immunization with P. berghei (Pb)-based surrogates of these four WSp formulations over a 36-week period. We show that EA-GAP WSp provide the lowest overall protection against an infectious Pb challenge, and that while immunization with RAS and LA-GAP WSp elicits the most durable protection, the protective efficacy of CPS WSp wanes rapidly over the 36-week period, most notably at higher immunization dosages. Analyses of liver immune cells show that CD44hi CD8+ T cells in CPS WSp-immunized mice express increased levels of the co-inhibitory PD-1 and LAG-3 markers compared to mice immunized with the other WSp formulations. This indicates that memory CD8+ T cells elicited by CPS WSp immunization display a more exhausted phenotype, which may explain the rapid waning of protection conferred by the former. These results emphasize the need for a detailed comparison of the duration of protection of different WSp formulations in humans and suggest a more beneficial effect of RAS and LA-GAP WSp compared to EA-GAP or CSP WSp.
更多
查看译文
关键词
Malaria,Vaccination,Whole-sporozoite,Long -term protection,Chemoprophylaxis with sporozoites,immunization,Immune responses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要