Improving thymus implantation for congenital athymia with interleukin-7

Hyunjung Min, Laura A. Valente,Li Xu, Shane M. O'Neil, Lauren R. Begg,Joanne Kurtzberg,Anthony J. Filiano

CLINICAL & TRANSLATIONAL IMMUNOLOGY(2023)

引用 0|浏览3
暂无评分
摘要
ObjectivesThymus implantation is a recently FDA-approved therapy for congenital athymia. Patients receiving thymus implantation develop a functional but incomplete T cell compartment. Our objective was to develop a mouse model to study clinical thymus implantation in congenital athymia and to optimise implantation procedures to maximise T cell education and expansion of naive T cells.MethodsUsing Foxn1nu athymic mice as recipients, we tested MHC-matched and -mismatched donor thymi that were implanted as fresh tissue or cultured to remove donor T cells. We first implanted thymus under the kidney capsule and then optimised intramuscular implantation. Using competitive adoptive transfer assays, we investigated whether the failure of newly developed T cells to expand into a complete T cell compartment was because of intrinsic deficits or whether there were deficits in engaging MHC molecules in the periphery. Finally, we tested whether recombinant IL-7 would promote the expansion of host naive T cells educated by the implanted thymus.ResultsWe determined that thymus implants in Foxn1nu athymic mice mimic many aspects of clinical thymus implants in patients with congenital athymia. When we implanted cultured, MHC-mismatched donor thymus into Foxn1nu athymic mice, mice developed a limited T cell compartment with notably underdeveloped naive populations and overrepresented memory-like T cells. Newly generated T cells were predominantly educated by MHC molecules expressed by the donor thymus, thus potentially undergoing another round of selection once in the peripheral circulation. Using competitive adoptive transfer assays, we compared expansion rates of T cells educated on donor thymus versus T cells educated during typical thymopoiesis in MHC-matched and -mismatched environments. Once in the circulation, regardless of the MHC haplotypes, T cells educated on a donor thymus underwent abnormal expansion with initially more robust proliferation coupled with greater cell death, resembling IL-7 independent spontaneous expansion. Treating implanted mice with recombinant interleukin (IL-7) promoted homeostatic expansion that improved T cell development, expanded the T cell receptor repertoire, and normalised the naive T cell compartment.ConclusionWe conclude that implanting cultured thymus into the muscle of Foxn1nu athymic mice is an appropriate system to study thymus implantation for congenital athymia and immunodeficiencies. T cells are educated by the donor thymus, yet naive T cells have deficits in expansion. IL-7 greatly improves T cell development after thymus implantation and may offer a novel strategy to improve outcomes of clinical thymus implantation. In this study, we found that interleukin-7 greatly improved T cell development and expanded the T cell receptor repertoire after thymus implantation in athymic nude mice. Thymus implantation is a recently approved therapy for congenital athymia; however, naive T cells fail to fully develop. Our findings indicate that developing strategies to incorporate interleukin-7 may potentially improve outcomes of clinical thymus implantation.aimage
更多
查看译文
关键词
primary immunodeficiency disorders,T cells,thymus,translational immunology,transplant immunology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要