Qualitative Proteome-wide Lysine Crotonylation Profiling Reveals Protein Modification Alteration in the Leukocyte Extravasation Pathway in Systemic Lupus Erythematosus

ACS OMEGA(2023)

引用 0|浏览8
暂无评分
摘要
Background: Systemic lupus erythematosus (SLE) is a severe systemic autoimmune disease with multiple manifestations. Lysine crotonylation (Kcr) is a newly discovered posttranslational modification epigenetic pattern that may affect gene expression and is linked to diseases causally. Methods: We collected blood samples from 11 SLE individuals and 36 healthy subjects. Then, we used highly sensitive liquid chromatography-mass spectrometry technology to carry out proteomics and quantitative crotonylome analysis of SLE peripheral blood mononuclear cells in this investigation, which indicated the unique etiology of SLE. Finally, we verified the expression of critical protein in the leukocyte extravasation pathway by online database analysis and Western blot. Results: There were 618 differentially expressed proteins (DEPs), and 612 crotonylated lysine sites for 272 differentially modified proteins (DMPs) found. These DEPs and DMPs are primarily enriched in the leukocyte extravasation signaling pathway, such as MMP8, MMP9, and ITGAM. Conclusions: This is the first study of crotonylated modification proteomics in SLE. The leukocyte extravasation signaling pathway had a considerable concentration of DEPs and DMPs, indicating that this pathway may be involved in the pathogenic development of SLE.
更多
查看译文
关键词
leukocyte extravasation pathway,systemic lupus erythematosus,protein modification alteration,proteome-wide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要