谷歌浏览器插件
订阅小程序
在清言上使用

Digital Twinning of Cardiac Electrophysiology for Congenital Heart Disease

Journal of the Royal Society interface(2024)

引用 0|浏览15
暂无评分
摘要
In recent years, blending mechanistic knowledge with machine learning has had a major impact in digital healthcare. In this work, we introduce a computational pipeline to build certified digital replicas of cardiac electrophysiology in paediatric patients with congenital heart disease. We construct the patient-specific geometry by means of semi-automatic segmentation and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-organ level model parameters and using rigorous mathematical models based on differential equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate and efficient means to recapitulate complex physical processes in a neural network. Here, we employ BLNMs to encode the parametrized temporal dynamics of in silico 12-lead electrocardiograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for fast and robust parameter estimation to match clinical ECGs in paediatric patients. Identifiability and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and uncertainty quantification.
更多
查看译文
关键词
single ventricle physiology,numerical simulations,neural maps,parameter estimation,uncertainty quantification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要