Quantum Interferometric Pathway Selectivity in Difference-Frequency-Generation Spectroscopy

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2023)

引用 0|浏览5
暂无评分
摘要
Even-order spectroscopies such as sum-frequency generation (SFG) and difference-frequency generation (DFG) can serve as direct probes of molecular chirality. Such signals are usually given by the sum of several interaction pathways that carry different information about matter. Here we focus on DFG, involving impulsive optical-optical-IR interactions, where the last IR pulse probes vibrational transitions in the ground or excited electronic state manifolds, depending on the interaction pathway. Spectroscopy with classical light can use phase matching to select the two pathways. In this theoretical study, we propose a novel quantum interferometric protocol that uses entangled photons to isolate individual pathways. This additional selectivity originates from engineering the state of light using a Zou-Wang-Mandel interferometer combined with coincidence detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要