Spatial and Temporal Control of 3D Hydrogel Viscoelasticity through Phototuning.

ACS biomaterials science & engineering(2023)

引用 0|浏览0
暂无评分
摘要
The mechanical properties of the extracellular environment can regulate a variety of cellular functions, such as spreading, migration, proliferation, and even differentiation and phenotypic determination. Much effort has been directed at understanding the effects of the extracellular matrix (ECM) elastic modulus and, more recently, stress relaxation on cellular processes. In physiological contexts such as development, wound healing, and fibrotic disease progression, ECM mechanical properties change substantially over time or space. Dynamically tunable hydrogel platforms have been developed to spatiotemporally modulate a gel's elastic modulus. However, dynamically altering the stress relaxation rate of a hydrogel remains a challenge. Here, we present a strategy to tune hydrogel stress relaxation rates in time or space using a light-triggered tethering of poly(ethylene glycol) to alginate. We show that the stress relaxation rate can be tuned without altering the elastic modulus of the hydrogel. We found that cells are capable of sensing and responding to dynamic stress relaxation rate changes, both morphologically and through differences in proliferation rates. We also exploited the light-based technique to generate spatial patterns of stress relaxation rates in 3D hydrogels. We anticipate that user-directed control of the 3D hydrogel stress relaxation rate will be a powerful tool that enables studies that mimic dynamic ECM contexts or as a means to guide cell fate in space and time for tissue engineering applications.
更多
查看译文
关键词
3d hydrogel viscoelasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要