Sensory uncertainty influences motor learning differently in blocked versus interleaved trial contexts when both feedforward and feedback processes are engaged

biorxiv(2023)

引用 0|浏览0
暂无评分
摘要
Theories of human motor learning commonly assume that the degree to which movement plans are adjusted in response to movement errors scales with the precision of sensory feedback received regarding their success. However, support for such error-scaling models has mainly come from experiments that limit the amount of correction that can occur within an ongoing movement. In contrast, we have recently shown that when this restriction is relaxed, and both within-movement and between-movement corrections co-occur, movement plans undergo large and abrupt changes that are strongly correlated with the degree of sensory uncertainty present on the previous trial and are insensitive to the magnitude and direction of the experienced movement error. Here, we show that the presence of these abrupt and error-insensitive changes can only be reliably detected when different levels of sensory precision are interleaved pseudo randomly on a trial-by-trial basis. These results augment our earlier findings and suggest that the co-occurrence of within-movement and between-movement corrections is not the only important aspect of our earlier study that challenged the error-scaling models of motor learning under uncertainty. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要