Real-Time and Online Monitoring of Hazardous Volatile Organic Compounds in Environmental Water by an Unmanned Shipborne Mass Spectrometer System

Jianfeng Zhang, Wenjie Huang, Riwei Wu, Zhiqi Yan,Guobin Tan, Chenghui Zhu,Wei Gao,Bin Hu

Environmental science & technology(2023)

引用 0|浏览3
暂无评分
摘要
Hazardous volatile organic compounds (VOCs) are one of the critical concerns in environmental water due to their toxicity to aquatic organisms and drinking water. Therefore, rapid detection of hazardous VOCs in environmental water is highly needed as many analytical methods are limited to on-site monitoring. In this work, we designed a novel unmanned shipborne mass spectrometer (US-MS) system for the real-time and online monitoring of hazardous VOCs in environmental water. The US-MS system consists of a miniaturized mass spectrometer, an automatic sampling device, a robust unmanned ship, and other monitoring and control devices. Along with the navigation route of the US-MS system, environmental water was continuously introduced into the MS system for the online and real-time detection of hazardous VOCs via a liquid/gas exchange membrane. Analytical performances of the US-MS system were investigated by a mixture of 10 VOCs showing low limits of detection (LODs: 0.31-1.26 ng/mL), good reproducibility (RSDs: 2.93-11.03%, n = 7), and excellent quantitative ability (R-2 > 0.99). Furthermore, on-site detection and online monitoring of hazardous volatile contaminants such as benzene, chloroprene, and toluene in different aquatic environments such as rivers and lakes were successfully demonstrated, showing excellent field applicability of the US-MS system. Overall, the newly developed US-MS system could perform on-site, online, and real-time monitoring of complex VOCs in environmental water, showing good performances and versatile applications in water analysis.
更多
查看译文
关键词
on-site mass spectrometry,environmental mass spectrometry,environmental water,water VOCs,unmanned ship,online monitoring,real-time monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要