First Report of Colletotrichum gloeosporioides Causing Anthracnose on Peanut in Chongqing, China.

Plant disease(2023)

引用 0|浏览3
暂无评分
摘要
In July 2022, dieback and discoloration were detected on infected stems of peanut in Qijiang District of Chongqing (106.56°E,29.41°N), China, with an incidence up to 5%. These peanut stems had disease symptoms typical of anthracnose with irregular gray-brown spots with dark brown edges, sunken, and necrotic. High temperature and high humidity were favorable for the growth of the pathogen. To isolate the pathogen, we collected 10 typical infected peanuts and cut one piece from each of symptomatic stems, surface sterilized with 0.5% NaClO for 1 min, and 75% ethanol for 30 s, then rinsed three times with sterile distilled water and dried on sterilized filter paper. These pieces were incubated on potato dextrose agar (PDA) at 25°C in the dark. Pure cultures were obtained from hyphal tips of each colony. It was found that isolates with the same colony morphology were isolated from each infected stem. A representative isolate (L7) was used for morphological characterization, molecular analysis, phylogenetic analysis, and pathogenicity tests. The colonies appeared white to gray, with white margins and aerial hyphae, and the reverse of the colonies was gray to brown. Conidia were cylindrical, aseptate, with obtuse to slightly rounded ends, 13.4 to 18.8 × 4.2 to 5.8 μm (n=50). Morphological characteristics were generally consistent with those of Colletotrichum gloeosporioides species complex (Cannon et al., 2012). For molecular identification, genomic DNA was extracted using a CTAB method and partial sequences of β-tubulin (TUB2), actin (ACT) genes, chitin synthase (CHS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified and sequenced using primers T1/T2, ACT-512F/ACT-783R, CHS-79F/CHS-345R, and GDF1/GDR1, respectively (Damm et al., 2012; Dowling et al., 2020). Using the BLAST, TUB2, ACT, CHS and GAPDH gene sequences (GenBank accession No. OR714793, OP168707, OP168708 and OR714794, respectively) were100% (429 bp out of 429 bp), 99.22% (256 bp out of 258 bp), 99.64% (276 bp out of 277 bp) and 100% (253 bp out of 253 bp) identical to C. gloeosporioides CBS:112999 (JQ005587, JQ005500, JQ005326, and JQ005239), respectively. Using Neighbor-Joining algorithm, phylogenetic analysis was conducted based on the concatenated sequences of published TUB2, ACT, CHS and GAPDH genes. The identified isolate (L7) was closely related to C. gloeosporioides. To evaluate pathogenicity, the stems of ten peanut (Zhonghua12) seedlings (2 weeks) were wounded with a sterile toothpick and mycelial plugs (5 mm in diameter) or 20 μl of conidial suspension (105/ml) were inoculated. Non-colonized agar plugs or 20 μl of sterile distilled water were treated as control. After inoculation, the peanuts were kept in a moist chamber at 28°C with 80% humidity in the dark for 24 h, and subsequently transferred to the moist chamber with 12 h light and darkness cycle for 6 days, similar symptoms were observed on all inoculated peanuts. Controls remained asymptomatic. C. gloeosporioides was reisolated from the diseased stems and confirmed using morphological features and sequence analysis of TUB2, ACT, CHS and GAPDH. Anthracnose caused by C. truncatum and C. fructicola has been reported on peanut leaves in China (Gong et al., 2023; Yu et al., 2019). To our knowledge, this is the first report of anthracnose on peanut stem caused by C. gloeosporioides in Chongqing. Our report will provide crucial information for studying on epidemiology and management of this disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要