Experimental pseudo-equivalent deterministic excitation method extension for low frequency domain applications

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA(2023)

引用 0|浏览0
暂无评分
摘要
In transport engineering applications, flow-induced vibrations is an interesting topic to address since it may negatively affect the operation and the response of the system. Wind tunnel facilities are mandatory to test the structure design efficiency or to analyse new material performances under aerodynamic load. However, these experimental tests can be expensive and take a long time to set up and operate; hence, alternative methods for the reproduction of the structural response to a turbulent boundary layer excitation are required to accelerate and improve the experimental setups and provide more data for uncertainty analysis. In this paper, an alternative approach, the eXperimental Pseudo-Equivalent Deterministic Excitation method (X-PEDEM), is here extended for applications in the low frequency domain. An investigation about the applicability of the method in the low frequency domain is conducted, together with an analysis of its main properties. The reliability of the method is then tested numerically by considering different conditions: two different panels, two different boundary conditions, and different asymptotic flow velocities are considered. (c) 2023 Acoustical Society of America.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要