谷歌浏览器插件
订阅小程序
在清言上使用

Gold-Manganese Bimetallic Redox Coupling with Light.

Journal of the American Chemical Society(2023)

引用 0|浏览6
暂无评分
摘要
The classical Au(I)/Au(III) redox couple chemistry has been limited to constructing C-C and C-X bonds, and thus, the exploration of the elementary reaction of gold redox coupling is very significant to enrich its organometallic features. Herein, we report the first visible-light-mediated, external oxidant-free Au(I)/Au(III) redox couple using commercially available Mn2(CO)10 to generate Mn-Au(III)-Mn intermediates for bimetallic redox coupling. A wide range of structurally diverse heterodinuclear and polynuclear L-Au(I)-Mn-L' complexes (19 examples, up to >99% yields) are readily constructed, providing a robust strategy for the concise construction of Au-Mn complexes under mild reaction conditions. The mechanistic studies together with DFT calculations support the radical oxidative addition of •Mn(CO)5 to gold and bimetallic reductive elimination mechanisms from highly active Mn-Au(III)-Mn species, representing an important step toward an elementary reaction in gold chemistry research. Furthermore, the resulting Au-Mn complexes exhibit unique catalytic activity, with which divergent reductive coupling of nitroarenes can readily afford azoxybenzenes, azobenzenes, and hydrazobenzenes in moderate to good yields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要