Chrome Extension
WeChat Mini Program
Use on ChatGLM

Role of F-actin-mediated Endocytosis and Exercise in Mitochondrial Transplantation in an Experimental Parkinson's Disease Mouse Model.

Mitochondrion(2024)

Cited 0|Views7
No score
Abstract
Dopaminergic neurons gradually deteriorate in Parkinson's Disease (PD), which is characterized by the intracellular accumulation of Lewy bodies that are enriched with α-synuclein protein. Mitochondrial dysfunction is one of the primary contributors to this and is considered as the central player in the pathogenesis of PD. Recently, improving mitochondrial function has been extensively explored as a therapeutic strategy in various preclinical PD models. Mitochondrial transplantation is one such naïve yet highly efficient technique that has been well explored in diseases like diabetes, NAFLD, and cardiac ischemia but not in PD. Here, we compared the effects of transplanting normal allogenic mitochondria to those of transplanting exercise-induced allogenic mitochondria isolated from the liver into the PD mouse model. It is already known that normal Mitochondrial Transplant (MT) reduces the PD pathology, but our research found out that exercise-induced mitochondria were more effective in treating the PD pathology because they had higher respiratory capacities. Additionally, compared to a standard transplant, this therapy significantly boosted the rate of mitochondrial biogenesis and the quantity of mitochondrial subunits in PD mice. Further, we also explored the mechanism of mitochondrial uptake into the cells and found that F-actin plays a key role in the internalization of mitochondria. This study is the first to demonstrate the relevance of exercise-induced allogenic MT and the function of F-actin in the internalization of mitochondria in PD mice.
More
Translated text
Key words
Parkinson 's Disease,Mitochondria,Exercise,Mitochondrial Transplant,F-actin
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined