Understanding ecological restoration potential: The role of water resources and slope gradient limits

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览5
暂无评分
摘要
Ecological restoration is one of the most feasible ways to mitigate climate change and conserve ecosystems. However, the scope, intensity, effectiveness, and future potential of ecological restoration are restricted by unfavorable environmental conditions, especially limited water resources and complex topography. This paper proposes an assessment framework of ecological restoration potential under the coupled limits of water resources and slope gradient to quantitatively assess ecological restoration potential (ERP) under these two limiting factors. Results indicate that the current vegetation plantation in 20%, 0.19% and 32% areas of China's 31 provinces are larger, equal, and lower than the vegetation threshold permitted by local water resources respectively, which represents about 0.299 billion ha potential for additional restoration area. The ecological restoration potential under the integrated water resources and slope gradient constraints is 0.4 Pg C, less than half (47%) of the potential under the single limit of water resources (0.856 Pg C). However, this potential and China's existing carbon sink capacity related to terrestrial ecosystems is estimated to offset up to 8% of its current carbon dioxide emissions. Ecological restoration programs in areas with slope >5 degrees will require additional economic investment to support Soil and Water Conservation programs, estimated to average about 212 trillion yuan. Succinctly, it is critical to integrate field investigations, process-based assessments and landscape design for sustainable ecological restoration. This work can provide techniques support for quantitative measurement of ecological restoration potential considering multiple limiting factors and guidance for sustainable implementation of ecological restoration programs.
更多
查看译文
关键词
Ecosystem restoration space,Slope angle,Complex topography,Water -limited areas,Ecosystem management and conservation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要