Novel isolates expand the physiological diversity of Prochlorococcus and illuminate its macroevolution

biorxiv(2023)

引用 0|浏览4
暂无评分
摘要
Prochlorococcus is a diverse picocyanobacterial genus and the most abundant phototroph on Earth. Its photosynthetic diversity divides it into high- or low-light adapted groups representing broad phylogenetic grades - each composed of several monophyletic clades. Here we physiologically characterize four new Prochlorococcus strains isolated from below the deep chlorophyll maximum in the North Pacific Ocean and combine this information with genomic and evolutionary analyses. The isolates belong to deeply-branching low-light adapted clades that have no other cultivated representatives and display some unusual characteristics. For example, despite its otherwise low-light adapted physiological characteristics, strain MIT1223 has low chl b2 content similar to high-light adapted strains. Isolate genomes revealed that each strain contains a unique arsenal of pigment biosynthesis and binding alleles that have been horizontally acquired, contributing to the observed physiological diversity. Comparative genomic analysis of all picocyanobacteria reveals that Pcb, the major pigment carrying protein in Prochlorococcus , greatly increased in copy number and diversity per genome along a branch that coincides with the loss of facultative particle attachment. Collectively, these observations add support to the current macroevolutionary model of picocyanobacteria, where niche constructing radiations allowed ancestral lineages to transition from a particle-attached to planktonic lifestyle and broadly colonize the water column, followed by adaptive radiations near the surface that pushed ancestral lineages deeper in the euphotic zone resulting in modern depth-abundance profiles. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要