Parametric Optimization of RC Beams Strengthened with FRCM Using FE Modelling and Response Surface Methodology

Qusai Aborahmeh,Mohamed Rabie,Usama Ebead

The International Conference on Civil Infrastructure and Construction Proceedings of the 2nd International Conference on Civil Infrastructure and Construction (CIC 2023)(2023)

引用 0|浏览0
暂无评分
摘要
This study focuses on the numerical and statistical analyses to predict the mid-span moment capacity of RC beams strengthened with fabric reinforcement cementitious mortar (FRCM) laminate. A finite element model (FEM) has been built to simulate twelve RC beams strengthened with two types of FRCM, namely Polyparaphenylene benzobisoxazole (PBO) FRCM and Carbon (C) FRCM. The FE models were verified based on experimental work available in the literature. The finite element models have shown a good agreement with experimental results in terms of maximum load-carrying capacity, load-deflection curves, and concrete strain values. The numerical simulation was followed by a parametric study on 42 models using face centred response surface methodology (RSM). Combining FEM and RSM, a novel mathematical model has been proposed to predict the mid-span moment capacity of the RC beams strengthened with FRCM. The results of the proposed model have shown optimal predictability with R2 equal to 90.34%. In addition, the proposed model agreed with the ACI design procedures and the existing literature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要