ETNAS: An energy consumption task-driven neural architecture search

SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS(2023)

引用 0|浏览8
暂无评分
摘要
Neural Architecture Search (NAS) is crucial in the field of sustainable computing as it facilitates the development of highly efficient and effective neural networks. However, it cannot automate the deployment of neural networks to accommodate specific hardware resources and task requirements. This paper introduces ETNAS, which is a hardware-aware multi-objective optimal neural network architecture search algorithm based on the differentiable neural network architecture search method (DARTS). The algorithm searches for a lower-power neural network architecture with guaranteed inference accuracy by modifying the loss function of the differentiable neural network architecture search. We modify the dense network in DARTS to simultaneously search for networks with a lower memory footprint, enabling them to run on memory-constrained edge-end devices. We collected data on the power consumption and time consumption of numerous common operators on FPGA and Domain-Specific Architectures (DSA). The experimental results demonstrate that ETNAS achieves comparable accuracy performance and time efficiency while consuming less power compared to state-of-the-art algorithms, thereby validating its effectiveness in practical applications and contributing to the reduction of carbon emissions in intelligent cyber-physical systems (ICPS) edge computing inference.
更多
查看译文
关键词
Neural architecture search,Differentiable architecture search,Power consumption,Task-driven,Multi-objective optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要