Chrome Extension
WeChat Mini Program
Use on ChatGLM

Evolving Brain and Behaviour Changes in Rats Following Repetitive Subconcussive Head Impacts

BRAIN COMMUNICATIONS(2023)

Cited 0|Views8
No score
Abstract
There is growing concern that repetitive subconcussive head impacts, independent of concussion, alter brain structure and function, and may disproportionately affect the developing brain. Animal studies of repetitive subconcussive head impacts are needed to begin to characterize the pathological basis and mechanisms underlying imaging and functional effects of repetitive subconcussive head impacts seen in humans. Since repetitive subconcussive head impacts have been largely unexplored in animals, we aimed to characterize the evolution of imaging, behavioural and pathological effects of repetitive subconcussive head impacts in awake adolescent rodents. Awake male and female Sprague Dawley rats (postnatal Day 35) received 140 closed-head impacts over the course of a week. Impacted and sham-impacted animals were restrained in a plastic cone, and unrestrained control animals were included to account for effects of restraint and normal development. Animals (n = 43) underwent repeated diffusion tensor imaging prior to and over 1 month following the final impact. A separate cohort (n = 53) was assessed behaviourally for fine motor control, emotional-affective behaviour and memory at acute and chronic time points. Histological and immunohistochemical analyses, which were exploratory in nature due to smaller sample sizes, were completed at 1 month following the final impact. All animals tolerated the protocol with no overt changes in behaviour or stigmata of traumatic brain injury, such as alteration of consciousness, intracranial haemorrhage or skull fracture. We detected longitudinal, sex-dependent diffusion tensor imaging changes (fractional anisotropy and axial diffusivity decline) in corpus callosum and external capsule of repetitive subconcussive head impact animals, which diverged from both sham and control. Compared to sham animals, repetitive subconcussive head impact animals exhibited acute but transient mild motor deficits. Repetitive subconcussive head impact animals also exhibited chronic anxiety and spatial memory impairment that differed from the control animals, but these effects were not different from those seen in the sham condition. We observed trends in the data for thinning of the corpus callosum as well as regions with elevated Iba-1 in the corpus callosum and cerebral white matter among repetitive subconcussive head impact animals. While replication with larger study samples is needed, our findings suggest that subconcussive head impacts cause microstructural tissue changes in the developing rat brain, which are detectable with diffusion tensor imaging, with suggestion of correlates in tissue pathology and behaviour. The results point to potential mechanisms underpinning consequences of subconcussive head impacts that have been described in humans. The congruence of our imaging findings with human subconcussive head impacts suggests that neuroimaging could serve as a translational bridge to advance study of injury mechanisms and development of interventions.
More
Translated text
Key words
Brain Development
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined