ASENN: attention-based selective embedding neural networks for road distress prediction

J. Big Data(2023)

引用 0|浏览10
暂无评分
摘要
This study proposes an innovative neural network framework, ASENN (Attention-based Selective Embedding Neural Network), for the prediction of pavement deterioration. Considering the complexity and uncertainty associated with the pavement deterioration process, two fundamental frameworks, SEL (Selective Embedding Layer) and MDAL (Multi-Dropout Attention Layer), are combined to enhance feature abstraction and prediction accuracy. This approach is significant while analyzing the pavement deterioration process due to the high variability of the contributing deterioration factors. These factors, represented as tabular data, undergo filtering, embedding, and fusion stages in the SEL, to extract crucial features for an effective representation of pavement deterioration. Further, multiple attention-weighted combinations of raw data are obtained through the MDAL. Several SELs and MDALs were combined as basic cells and layered to form an ASENN. The experimental results demonstrate that the proposed model outperforms existing tabular models on four road distress parameter datasets corresponding to cracking, deflection, international roughness index, and rutting. The optimal number of cells was determined using different ablation settings. The results also show that the feature learning capabilities of the ASENN model improved as the number of cells increased; however, owing to the limited combination space of feature fields, extreme depths were not preferred. Furthermore, the ablation investigation demonstrated that MDAL can improve performance, particularly on the cracking dataset. Notably, compared with mainstream transformer models, ASENN requires significantly less storage and achieves faster execution speed.
更多
查看译文
关键词
Pavement deterioration,Tabular data,Road distress parameters,Prediction models,Deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要