Domain-specific implementation of high-order Discontinuous Galerkin methods in spherical geometry

COMPUTER PHYSICS COMMUNICATIONS(2024)

引用 0|浏览2
暂无评分
摘要
In recent years, domain-specific languages (DSLs) have achieved significant success in large-scale efforts to reimplement existing meteorological models in a performance portable manner. The dynamical cores of these models are based on finite difference and finite volume schemes, and existing DSLs are generally limited to supporting only these numerical methods. In the meantime, there have been numerous attempts to use high order Discontinuous Galerkin (DG) methods for atmospheric dynamics, which are currently largely unsupported in main-stream DSLs. In order to link these developments, we present two domain-specific languages which extend the existing GridTools (GT) ecosystem to high-order DG discretization. The first is a C++-based DSL called G4GT, which, despite being no longer supported, gave us the impetus to implement extensions to the subsequent Python-based production DSL called GT4Py to support the operations needed for DG solvers. As a proof of concept, the shallow water equations in spherical geometry are implemented in both DSLs, thus providing a blueprint for the application of domain-specific languages to the development of global atmospheric models. We believe this is the first GPU-capable DSL implementation of DG in spherical geometry. The results demonstrate that a DSL designed for finite difference/volume methods can be successfully extended to implement a DG solver, while preserving the performance-portability of the DSL.
更多
查看译文
关键词
Domain-specific languages,GPU programming,Discontinuous Galerkin methods
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要