Dual-modulus 3D printing technology for magnetorheological Metamaterials-Part II: Negative regulation theory and application

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING(2024)

引用 0|浏览4
暂无评分
摘要
Metamaterials are artificially structured periodic materials that have remarkable property of wave attenuation in bandgaps. However, metamaterials with adjustable and low-frequency bandgap are still challenge in traditional method. In this work, a novel magnetorheological metamaterial (MRM) with negative regulation and low -frequency bandgaps was fabricated by dual-modulus 3D printing technology. The bandgaps of negative regulation MRM were analyzed theoretically by using the mass-spring model. As a result, the starting frequency of bandgap reduced by 37.6% and ending frequency increased by 47.8% under external magnetic field. Moreover, the propagation characteristics of longitudinal wave in negative regulation MRM were also studied and the results indicated that the stiffnesses were magnetic-related, and the bandgap can be tuned substantially under external magnetic field. This work presented a negative regulation MRM that the bandgap was broadened and moved to lower frequency under the external magnetic field, showing a great potential in the field of vibration isolation.
更多
查看译文
关键词
A. Smart materials,B. Vibration,B. Magnetic properties,E. 3D Printing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要