Buried interface management via bifunctional NH4BF4 towards efficient CsPbI2Br solar cells with a Voc over 1.4 V

JOURNAL OF ENERGY CHEMISTRY(2024)

引用 0|浏览2
暂无评分
摘要
CsPbI2Br perovskite solar cells (PSCs) have drawn tremendous attention due to their suitable bandgap, excellent photothermal stability, and great potential as an ideal candidate for top cells in tandem solar cells. However, the abundant defects at the buried interface and perovskite layer induce severe charge recombination, resulting in the open-circuit voltage (Voc) output and stability much lower than anticipated. Herein, a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI2Br defects by introducing ammonium tetrafluoroborate (NH4BF4), thereby resulting in both high CsPbI2Br crystallization and minimized interfacial energy losses. Specifically, NH4+ ions could preferentially heal hydroxyl groups on the SnO2 surface and balance energy level alignment between SnO2 and CsPbI2Br, enhancing charge transport efficiency, while BF4_ anions as a quasi-halogen regulate crystal growth of CsPbI2Br, thus reducing perovskite defects. Additionally, it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI2Br for strengthening the phase stability. As a result, the optimized CsPbI2Br PSCs realize a remarkable efficiency of 17.09% and an ultrahigh Voc output of 1.43 V, which is one of the highest values for CsPbI2Br PSCs. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
更多
查看译文
关键词
Inorganic perovskite,Buried interface,Defect,Stability,Open-circuit voltage loss
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要