An inhomogeneous singular perturbation problem for the $p(x)-$Laplacian

LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas)(2015)

引用 0|浏览0
暂无评分
摘要
In this paper we study the following singular perturbation problem for the $p_\varepsilon(x)$-Laplacian: \[ \Delta_{p_\varepsilon(x)}u^\varepsilon:=\mbox{div}(|\nabla u^\varepsilon(x)|^{p_\varepsilon(x)-2}\nabla u^\varepsilon)={\beta}_{\varepsilon}(u^\varepsilon)+f_\varepsilon, \quad u^\varepsilon\geq 0, \] where $\varepsilon>0$, ${\beta}_{\varepsilon}(s)={1 \over \varepsilon} \beta({s \over \varepsilon})$, with $\beta$ a Lipschitz function satisfying $\beta>0$ in $(0,1)$, $\beta\equiv 0$ outside $(0,1)$ and $\int \beta(s)\, ds=M$. The functions $u^\varepsilon$, $f_\varepsilon$ and $p_\varepsilon$ are uniformly bounded. We prove uniform Lipschitz regularity, we pass to the limit $(\varepsilon\to 0)$ and we show that, under suitable assumptions, limit functions are weak solutions to the free boundary problem: $u\ge0$ and \[ \begin{cases} \Delta_{p(x)}u= f & \mbox{in }\{u>0\}\\ u=0,\ |\nabla u| = \lambda^*(x) & \mbox{on }\partial\{u>0\} \end{cases} \] with $\lambda^*(x)=\Big(\frac{p(x)}{p(x)-1}\,M\Big)^{1/p(x)}$, $p=\lim p_\varepsilon$ and $f=\lim f_\varepsilon$. In \cite{LW4} we prove that the free boundary of a weak solution is a $C^{1,\alpha}$ surface near flat free boundary points. This result applies, in particular, to the limit functions studied in this paper.
更多
查看译文
关键词
inhomogeneous singular perturbation problem
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要