Compensation of front-end and modulation delays in phase and ranging measurements for time-delay interferometry

Physical Review D(2023)

引用 0|浏览0
暂无评分
摘要
In the context of the Laser Interferometer Space Antenna (LISA), the laser subsystems exhibit frequency fluctuations that introduce significant levels of noise into the measurements, surpassing the gravitational wave signal by several orders of magnitude. Mitigation is achieved via time-shifting individual measurements in a data processing step known as time-delay interferometry (TDI). The suppression performance of TDI relies on accurate knowledge and consideration of the delays experienced by the interfering lasers. While considerable efforts have been dedicated to the accurate determination of inter-spacecraft ranging delays, the sources for onboard delays have been either neglected or assumed to be known. Contrary to these assumptions, analog delays of the phasemeter front end and the laser modulator are not only large but also prone to change with temperature and heterodyne frequency. This motivates our proposal for a novel method enabling a calibration of these delays on-ground and in-space, based on minimal functional additions to the receiver architecture. Specifically, we establish a set of calibration measurements and elucidate how these measurements are utilized in data processing, leading to the mitigation of the delays in the TDI Michelson variables. Following a performance analysis of the calibration measurements, proposed calibration scheme is assessed through numerical simulations. We find that in the absence of the calibration scheme, the assumed drifts of the analog delays increase residual laser noise at high frequencies of the LISA measurement band. A single, on-ground calibration of the analog delays leads to an improvement by roughly one order of magnitude, while re-calibration in space may improve performance by yet another order of magnitude. Towards lower frequencies, ranging error is always found to be the limiting factor for which countermeasures are discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要