Surface engineering for ultrathin metal anodes enabling high-performance Zn-ion batteries

arXiv (Cornell University)(2022)

引用 2|浏览0
暂无评分
摘要
Zn metal battery has been considered a promising alternative energy storage technology in renewable energy storage and grid storage. It is well-known that the surface orientation of a Zn metal anode is vital to the reversibility of a Zn metal battery. Herein, the (101)-oriented thin Zn metal anode (down to 2 {\mu}m) is electrodeposited on a Cu surface by adding dimethyl sulfoxide (DMSO) electrolyte additive in ZnSO4 aqueous solution. Scanning electron microscope (SEM) observation indicates the formation of flat terrace-like compact (101)-oriented surfaces. Insitu optical observation confirms that the (101)-oriented surfaces can be reversibly plated and stripped. DFT calculations reveal two mechanisms for the nucleation and growth of the Zn-(101) surface: (1) formation of Zn(101)//Cu(001) could lower the interface energy as compared to Zn(002)//Cu(001); (2) large reconstruction of the Zn (101) surface with DMSO and H2O absorption. Raman, XPS, and ToF-SIMS characterizations indicate that adding DMSO in ZnCl2 could facilitate the formation of ZnO-based SEI on Zn metal surface, while OH- and S-based SEI can be obtained with DMSO in ZnSO4. The electrochemical testings are performed, which demonstrates a higher cyclability for the (101)-oriented Zn in the half cell as well as a lower charge transfer barrier with respect to the (002)-dominated surface of the same electrode thickness. Zn||V2O5 full cells are further assembled, showing better capacity retention for the (101)-Zn as compared to the (002)-Zn with the same thickness (5 {\mu}m, 3 {\mu}m, and 2 {\mu}m). We hope this study to spur further interest in the control of Zn metal surface crystallographic orientation towards ultrathin Zn metal anodes.
更多
查看译文
关键词
ultrathin metal anodes,surface engineering,high-performance,zn-ion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要