Transcription induces context-dependent remodeling of chromatin architecture during differentiation

Sanjay Chahar,Yousra Ben Zouari,Hossein Salari, Dominique Kobi,Manon Maroquenne, Cathie Erb,Anne M. Molitor, Audrey Mossler,Nezih Karasu,Daniel Jost,Tom Sexton

PLOS BIOLOGY(2023)

引用 0|浏览2
暂无评分
摘要
Metazoan chromosomes are organized into discrete spatial domains (TADs), believed to contribute to the regulation of transcriptional programs. Despite extensive correlation between domain organization and gene activity, a direct mechanistic link is unclear, with perturbation studies often showing little effect. To follow chromatin architecture changes during development, we used Capture Hi-C to interrogate the domains around key differentially expressed genes during mouse thymocyte maturation, uncovering specific remodeling events. Notably, one TAD boundary was broadened to accommodate RNA polymerase elongation past the border, and subdomains were formed around some activated genes without changes in CTCF binding. The ectopic induction of some genes was sufficient to recapitulate domain formation in embryonic stem cells, providing strong evidence that transcription can directly remodel chromatin structure. These results suggest that transcriptional processes drive complex chromosome folding patterns that can be important in certain genomic contexts. Links between genome organization and transcriptional control have been controversial and unclear. Although most TADs (topologically associated domains) are stable through development, this study shows by ectopic induction in ESCs that transcription can directly remodel TADs, with a context-dependent sensitivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要