谷歌浏览器插件
订阅小程序
在清言上使用

Adding machine learning to the MIP toolkit: Predictor importance for hydrological fluxes of Global Hydrological and Land Surface Models

Authorea (Authorea)(2023)

引用 0|浏览21
暂无评分
摘要
Global Hydrological and Land Surface Models (GHM/LSMs) embody numerous interacting predictors and equations, complicating the diagnosis of primary hydrological relationships. We propose a model diagnostic approach based on Random Forest feature importance to detect the input variables that most influence simulated hydrological processes. We analyzed the JULES, ORCHIDEE, HTESSEL, SURFEX and PCR-GLOBWB models for the relative importance of precipitation, climate, soil, land cover and topographic slope as predictors of simulated average evaporation, runoff, and surface and subsurface runoffs. The machine learning model could reproduce GHM/LSMs outputs with a coefficient of determination over 0.85 in all cases and often considerably better. The GHM/LSMs agreed precipitation, climate and land cover share equal importance for evaporation prediction, and mean precipitation is the most important predictor of runoff. However, the GHM/LSMs disagreed on which features determine surface and subsurface runoff processes, especially with regards to the relative importance of soil texture and topographic slope.
更多
查看译文
关键词
global hydrological,hydrological fluxes,mip toolkit,predictor importance,machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要