Monolithic Integration of Ultraslim Flow Sensor and Medical Guidewire by Laser Filament Scanning Sintering for In Vivo Diagnostics of Cardiovascular Diseases

ACS SENSORS(2023)

引用 0|浏览1
暂无评分
摘要
In this study, an ultraslim thermal flow sensor system integrated onto a 340 mu m diameter medical guidewire was developed using a laser filament scanning sintering method for the early diagnosis of cardiovascular diseases. The proposed system is a calorimetric-based micro thermal flow sensor comprising a microheater and two thermistors. Prior to fabrication, the sensor design was optimized through flow simulation, and the patterned sensor was successfully implemented on a thin and curved surface of the medical guidewire using a laser patterning method with Ag nanoparticles. The performance of the ultraslim thermal flow sensor-on-guidewire system (SoW) was evaluated under pulsatile flow by using an artificial heartbeat simulator with differentially induced fluid flow velocities of up to 60 cm/s. The resulting electrical signals generated by the temperature difference between the two thermistors caused by the fluid flow were measured across different velocity ranges. Based on the obtained data, a calibration curve was derived to establish the relationship between the fluid velocity and the sensor output voltage. Furthermore, the SoW was tested on living animals, whereby the measured blood flow velocities were 60-90 cm/s in the left coronary artery of pigs. This research demonstrates the potential of ultraslim microsensors, such as the developed thermal flow sensor system, for various industries, particularly in the medical field.
更多
查看译文
关键词
thermal flow sensor,laser filament scanning sintering,guidewire,blood flow rate,coronary artery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要