中间包内钢液流动和二次氧化的数值模拟
燕山大学 | 北京科技大学 | 燕山大学材料科学与工程学院 | 北方工业大学
Abstract
由于目前关于铸锭中间包内钢液二次氧化过程仍然缺乏深入研究,对某厂实际生产303 t铸锭过程中真空脱气精炼(Vacuum Degassing Refining,VD)过程以及中间包内钢液进行取样,分析了钢中总氧(TO)和总氮(TN)含量的变化以及夹杂物成分、数量和尺寸的变化.结果表明,由于大铸锭浇注过程没有进行保护浇注,导致中间包内钢液的 TO 和TN质量分数较精炼结束分别增加了 5.59×10-6和9.08×10-6.二次氧化后,夹杂物的数密度增加了近4倍,夹杂物也由液态的钙铝酸盐向A12O3转变,降低了钙处理效果.数值模拟得到浇注时中间包钢液面卷入空气的平均速率为4.2×10-5 kg/s,圆形中间包较深的液位导致中间包进出口温差达到3.9 K.二次氧化后,在注流区的TO质量分数较高,而在右侧循环流区域和靠近底部区域质量分数较低,TO的平均质量分数和最大质量分数分别为28.6×10-6和45.3×10-6;CaO和Al2O3的平均质量分数分别为20.9×10-6和32.3 × 10-6.研究结果为优化中间包浇注过程中钢液二次氧化问题提供理论指导.
MoreKey words
heavy ingot tundish,multiphase flow,reoxidation,inclusion composition,spatial distribution
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper