Size and transparency influence diel vertical migration patterns in copepods

LIMNOLOGY AND OCEANOGRAPHY(2023)

引用 0|浏览2
暂无评分
摘要
Diel vertical migration (DVM) is a widespread phenomenon in aquatic environments. The primary hypothesis explaining DVM is the predation-avoidance hypothesis, which suggests that zooplankton migrate to deeper waters to avoid detection during daylight. Copepods are the predominant mesozooplankton undergoing these migrations; however, they display massive morphological variation. Visual risk also depends on a copepod's morphology. In this study, we investigate hypotheses related to morphology and DVM: (H1) as size increases visual risk, increases in body size will increase DVM magnitude and (H2) if copepod transparency can reduce visual risk, increases in transparency will reduce DVM magnitude. In situ copepod images were collected across several cruises in the Sargasso Sea using an Underwater Vision Profiler 5. Copepod morphology was characterized from these images and a dimension reduction approach. Although in situ imaging offers challenges for quantifying mesozooplankton behavior, we introduce a robust method for quantifying DVM. The results show a clear relationship in which larger copepods have a larger DVM signal. Darker copepods also have a larger DVM signal, however, only among the largest group of copepods and not smaller ones. These findings highlight the complexity of copepod morphology and DVM behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要